Reck-Peterson lab members shown in bold.

2024

Raig ND, Surridge KJ, Sanz-Murillo M, Dederer V, Krämer A, Schwalm MP, Elson L, Chatterjee D, Mathea S, Hanke T, Leschziner AE, Reck-Peterson SL, Knapp S. (2024) Type-II kinase inhibitors that target Parkinson’s Disease-associated LRRK2. bioRxiv. doi: 10.1101/2024.09.17.613365. [pdf]

Theriot, J. A., Simonsen, A., Tolić, I., Leonetti, M. D., Mayor, S., Bassereau, P., Paluch, E. K., Han, J., Covert, M. W., Mizushima, N., Reck-Peterson, S., Strasser, A., & Cheeseman, I. (2024) Cell biology is…. Cell, 187(2), 219–224. https://doi.org/10.1016/j.cell.2023.12.020 [pdf]

Dederer, V., Sanz Murillo, M., Karasmanis, E. P., Hatch, K. S., Chatterjee, D., Preuss, F., Abdul Azeez, K. R., Nguyen, L. V., Galicia, C., Dreier, B., Plückthun, A., Versees, W., Mathea, S., Leschziner, A. E., Reck-Peterson, S. L., & Knapp, S. (2024) A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. The Journal of biological chemistry, 300(7), 107469. https://doi.org/10.1016/j.jbc.2024.107469 [pdf]


2023

Kusakci E, Htet ZM, Zhao Y, Gillies JP, Reck-Peterson SL, Yildiz A. (2023) Lis1 slows force-induced detachment of cytoplasmic dynein from microtubules. Nat Chem Biol. doi: 10.1038/s41589-023-01464-6. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.06.02.494578

Karasmanis EP*, Reimer JM*, Kendrick AA*, Nguyen Kendrick HV, Rodriguez JATruong JB, Lahiri I, Reck-Peterson SL‡, and Leschziner AE‡. (2023) Lis1 relieves cytoplasmic dynein-1 auto-inhibition by acting as a molecular wedge. Nat Struct Mol Biol. 30: 1357-1364. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.10.10.511666
Commentary: Lau, CK. (2023) New pieces for the Lis-dynein puzzle. Nat Struct Mol Biol. 30: 1244-1246. [pdf]

Rangan KJ‡ and Reck-Peterson, SL‡. (2023) RNA recoding in cephalopods tailors microtubule motor protein function. Cell 186: 2531-2543. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.09.25.509396
Commentary : Koenig, KM. (2023) Chilling with cephalopods: Temperature-responsive RNA editing in octopus and squid. Cell 186: 2518-2520. [pdf]
KPBS video: [you tube link]

Songster LD, Bhuyan D, Christensen JR‡, Reck-Peterson SL‡. (2023) Woronin bodies move dynamically and bidirectionally by hitchhiking on early endosomes in Aspergillus nidulans. Mol. Biol. Cell 34(7):br9. doi: 10.1091/mbc.E23-01-0025. [pdf]
Also on bioRxiv: doi.org/10.1101/2023.01.20.524968

Reimer JM, DeSantis ME, Reck-Peterson SL‡, and Leschziner AE‡. (2023) Structures of human cytoplasmic dynein in complex with the lissencephaly 1 protein, LIS1. eLife, doi: 10.7554/eLife.84302. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.10.08.511426

Reimer JM, Dickey AM**, Lin YX**, Abrisch RG**, Mathea S, Chatterjee D, Fay EJ, Knapp S, Daugherty MD, Reck-Peterson SL‡, and Leschziner AE‡. (2023) Structure of LRRK1 and mechanisms of autoinhibition and activation. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.11.22.517582


2022

Snead DM*, Matyszewski M*, Dickey AM*, Lin YX, Leschziner AL‡, Reck-Peterson SL‡. (2022) Structural basis for Parkinson’s Disease-linked LRRK2’s binding to microtubules. Nat Struct Mol Biol. 12: 1196-1207. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.01.21.477284

Stevens DA*, Beierschmitt C*, Mahesula S, Corley MR, Salogiannis J, Tsu BV, Cao B, Ryan AP, Hakozawki H, Reck-Peterson SL‡, and Daugherty MD‡. (2022) Antiviral function and viral antagonism of the rapidly evolving dynein activating adaptor NINL. eLife: 10.7554/eLife.81606. [pdf]
Also on bioRxiv: doi.org/10.1101/2022.07.11.499552

Christensen JR‡ and Reck-Peterson SL‡. (2022) Hitchhiking across kingdoms: co-transport of cargos in fungal, animal, and plant cells. Ann Rev Cell Dev Biol., doi: 10.1146/annurev-cellbio-120420-104341. [pdf]

Gillies JP*, Reimer JM*, Karasmanis EP*, Lahiri I, Htet ZM, Leschziner AE‡, Reck-Peterson SL‡. (2022) Structural basis for cytoplasmic dynein-1 regulation by Lis1. Elife. 10.7554. [link]
Also on bioRxiv: doi.org/10.1101/2021.06.11.448119


2021

Christensen JR*, Kendrick AA*, Truong JB, Aguilar-Maldonado A, Adani V, Dzieciatkowska M, Reck-Peterson SL. (2021) Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS-Hook-FHIP complexes. Elife. 10:e74538. [link]
Also on bioRxiv: doi.org/10.1101/2021.10.07.463551

Triclin S, Inoue D, Gaillard J, Htet ZM, DeSantis ME, Portran D, Derivery E, Aumeier C, Schaedel L, John K, Leterrier C, Reck-Peterson SL, Blanchoin L, Théry M. (2021) Self-repair protects microtubules from destruction by molecular motors. Nat Mater. 20(6):883-891. [link]
Also on bioRxiv: doi.org/10.1101/499020

Leschziner AE*, Reck-Peterson SL*. (2021) Structural Biology of LRRK2 and its Interaction with Microtubules. Mov Disord. 36(11):2494-2504. [link]

Mogre SS, Christensen JR, Reck-Peterson SL, Koslover EF. (2021) Optimizing microtubule arrangements for rapid cargo capture. Biophys J. 16;120(22):4918-4931. [link]
Also on bioRxiv: doi.org/10.1101/2021.06.02.446824

Salogiannis J*, Christensen JR*, Songster LD, Aguilar-Maldonado A, Shukla N, Reck-Peterson SL. (2021) Regulation of peroxisome and lipid droplet hitchhiking by PxdA and the DipA phosphatase. MBoC: [pdf]


2020

Deniston CK*, Salogiannis J*, Mathea S*, Snead DM, Lahiri I, Matyszewski M, Donosa O, Watanabe R, Bohning J, Shiau AK, Knapp S, Villa E, Reck-Peterson SL‡, Leschziner AL‡. (2020) Structure of LRRK2 in Parkinson’s disease and model for microtubule interaction. Nature: 588:344-349. [pdf]

Htet ZM*, Gillies JP*, Baker RW, Leschziner AL, DeSantis ME‡, Reck-Peterson SL‡. (2020) Lis1 promotes the formation of maximally activated cytoplasmic dynein-1 complexes. Nat Cell Biol. 5: 518-525. [pdf]
Commentary on this research appeared in: Nat Cell Biol. 22: 515-517. [pdf]

Mogre SS, Christensen JR, Reck-Peterson SL, Koslovar EF. (2020) Hitching a Ride: Mechanics of Organelle Transport Through Linker-Mediated Hitchhiking. Biophysical Journal 118: 1357-1369. [pdf]
Also on bioRxiv: doi.org/10.1101/811372


2019

Cao Y, Ghabache E, Miao Y, Niman C, Hakozaki H, Reck-Peterson SL, Devreotes PN, Rappel WJ. (2019) A minimal computational model for three-dimensional cell migration. J R Soc Interface 16(161): 20190619. [pdf]

Kendrick AA, Dickey AM**, Redwine WB**, Tran PT, Pontano Vaites L, Dzieciatkowska M, Harper JW, and Reck-Peterson SL. (2019) HOOK3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C. J Cell Biol. 218: 2982-3001. [pdf]
Also on bioRxiv: doi.org/10.1101/508887


2018

Reck-Peterson SL‡, Redwine WB, Vale RD. Carter AP‡. (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19: 382-398. DOI: 10.1038/s41580-018-0004-3. [pdf]


2017

DeSantis ME*, Cianfrocco MA*, Htet ZA*, Tran PT, Reck-Peterson SL‡, Leschziner AE‡. (2017) Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170: 1197-1208. [pdf]
Also on bioRxiv: doi.org/10.1101/152645

Redwine WB*, DeSantis, ME*, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL. (2017) The human cytoplasmic dynein interactome reveals novel activators of motility. eLife: 6:e28257. [pdf]
Also on bioRxiv: doi.org/10.1101/143743

Lippert LG, Dadosh T, Hadden JA, Karnawat V, Diroll BT, Murray CB, Holzbaur ELF, Schulten K, Reck-Peterson SL, Goldman YE. (2017) Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. PNAS: 114: E4564-E4573.  [pdf]

Salogiannis J and Reck-Peterson SL. (2017) Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport.Trends Cell Biol 27: 141-150. [pdf]


2016

Salogiannis J, Egan MJ, Reck-Peterson SL. (2016) Peroxisomes move by hitchhiking on early endosomes using the novel linker proteins PxdA. J Cell Biol 212: 289-296. [pdf]
Also on bioRxiv: doi.org/10.1101/034231
     Commentary on this research appeared in:
   
 In this issue: Short B. (2016) PxdA helps peroxisomes hitch a ride. J Cell Biol 212: 258. [pdf]
     Research highlight: Strzyz P. (2016) How peroxisomes hitchhike on endosomes. Nat Rev Mol Cell Biol 17: 134.


2015

Cianfrocco MA*, DeSantis ME*, Leschziner AE, Reck-Peterson SL. (2015) Mechanism and Regulation of Cytoplasmic Dynein. Annu Rev Cell Dev Biol 31: 83-108. [pdf]

Egan MJ*, McClintock MA*, Hollyer IH, Elliott HL, Reck-Peterson SL. (2015) Cytoplasmic dynein is required for the spatial organization of protein aggregates in filamentous fungi. Cell Reports 11: 201-209. [pdf]

Reck-Peterson SL. (2015) Dynactin Revealed. Nat Struct Mol Biol. 22: 359-360. [pdf]


2014

Downes DJ, Chonofsky M, Tan K, Pfannenstiel BT, Reck-Peterson SL, Todd RB. (2014) Characterization of the Mutagenic Spectrum of 4-Nitroquinoline 1-Oxide (4-NQO) in Aspergillus nidulans by Whole Genome Sequencing. G3 4: 2483-2492. [pdf]

Toropova K*, Zou S*, Roberts AJ, Redwine WB, Goodman BS, Reck-Peterson SL‡, Leschziner AE‡. (2014) Lis1 regulates dynein by sterically blocking its mechanochemical cycle. eLIFE 3:e03372. [pdf]

Cheng L, Desai J, Miranda CJ, Duncan JS, Qiu W, Nugent AA, Kolpak AL, Wu CC, Drokhlyansky E, Delisle MM, Chan W, Wei Y, Propst F, Reck-Peterson SL, Fritzsch B, Engle EC. (2014) Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82: 334-349. [pdf]

Reck-Peterson SL. (2014) Molecular motors: shifting gears with light. Nat Nanotech 9: 661-662. [pdf]

Roberts AJ, Goodman BS, Reck-Peterson SL. (2014) Reconstitution of dynein transport to the microtubule plus end by kinesin. eLIFE 3:e02641. [pdf]

Tan K, Roberts AJ, Chonofsky M, Egan MJ, Reck-Peterson SL. (2014) A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity. Mol Biol Cell 25: 669-678. [pdf]

Goodman BS and Reck-Peterson SL. (2014) Engineering defined motor ensembles with DNA origami. Methods in Enzymology 540: 169-188. [pdf]


2013

Reck-Peterson SL. (2013) Teaming up: from motors to people. Mol. Biol. Cell. 24: 3267-3269. [pdf]


2012

Egan MJ, McClintock MA, Reck-Peterson SL. (2012) Microtubule-based transport in filamentous fungi. Curr Opin Microbiol 15: 637-645. [pdf]

Derr ND*, Goodman BS*, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL. (2012) Tug of war in motor protein ensembles revealed with a programmable DNA origmai scaffold. Science 338: 662-665. [pdf]    
     Commentary on this research appeared in: Science 338: 626-627. [pdf]

Goodman BS, Derr ND, Reck-Peterson SL. (2012) Engineered, harnessed, and hijacked: synthetic uses for cytoskeletal systems. Trends Cell Biol 22: 644-652. [pdf]

Redwine WB*, Hernandez-Lopez R*, Zou S, Huang J, Reck-Peterson SL, Leschziner AE. (2012) Structural basis for microtubule binding and release by dynein.Science 337: 1532-1536. [pdf]

Huang J*, Roberts AJ*, Leschziner AE, Reck-Peterson SL. (2012) Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor. Cell 150: 975-986. [pdf]
     Commentary on this research appeared in Cell 150: 877-879 [pdf]

Egan M, Tan K, Reck-Peterson SL. (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197: 971-982. [pdf]
     Commentary on this research appeared in: J Cell Biol 197: 852. [pdf]

Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duin M, Lopez MP, Vale RD, Julicher F, Reck-Peterson SL, Dogterom M. (2012) “Cortical” dynein controls microtubule dynamics and length, generating pulling forces that reliably position microtubule asters. Cell 148: 502-514. [pdf]

Qiu W*, Derr ND*, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL. (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 19: 193-200. [pdf]
      Commentary on this research appeared in: Nature 482: 7383. [pdf]


2011 and earlier

Reck-Peterson SL, Vale RD, Gennerich A. (2011) Motile properties of cytoplasmic dynein. In “Handbook of dynein.” Pan Stanford Publishing. Editors: Keiko Hirose and Linda Amos. [pdf]

Zhang J, Tan K, Wu X, Chen G, Sun J, Reck-Peterson SL, Hammer J, Xiang X. (2011) Aspergillus myosin-V supports polarized growth in the absence of microtubule-based transport. PLoS One 6: e28575. [pdf]

Su X, Qiu W, Gupta ML, Pereira-Leal JB, Reck-Peterson SL, Pellman D. (2011) Mechanism underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol Cell 43: 751-763. [pdf]

Gennerich A, and Reck-Peterson SL. (2011) Probing the force generation and stepping behavior of cytoplasmic dynein. Methods Mol Biol 783: 63-80. [pdf]

Reck-Peterson SL, Derr N, Stuurman N. (2010) Single molecule imaging using total internal reflection microscopy. In “Live Cell Imaging: a laboratory manual”, 2nd edition. Cold Spring Harbor Press. [pdf]


Postdoctoral work

Kardon J, Reck-Peterson SL, Vale RD. (2009) Regulation of the processivity and intracellular localization of S. cerevisiae dynein by dynactin. PNAS 106: 5669-74. [pdf]

Cho C, Reck-Peterson SL, Vale RD. (2008) Cytoplasmic dynein's regulatory ATPase sites affect processivity and force generation. J Biol Chem 283: 25839-45. [pdf]

Gennerich A, Carter AP, Reck-Peterson SL, Vale RD. (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131: 952-965. [pdf]

Reck-Peterson SL, Yildiz Y**, Carter AP**, Gennerich A, Zhang N, and Vale RD. (2006) Single molecule analysis of dynein processivity and stepping behavior.Cell 126: 335-348. [pdf]
      Commentaries on this research appeared in: Cell 126: 242-244 [pdf], Nat Rev Mol Cell Biol 7: 625 [pdf], J Cell Biol 172: 486-492 [pdf]

*co-first author; **co-second author; ‡co-corresponding author

Search Pubmed for Reck-Peterson lab publications